Worksheet #1
$$1^{2}$$
 FTC.

1 $y'=2+\frac{1}{x^{2}}$ and $y(1)=6$. Find $y(3)$.

Mathod 1 $y=\int (2+\frac{1}{x^{2}})dx=2x-\frac{1}{x}+C$
 $y(1)=6=2-1+C$
 $y=2x-\frac{1}{x}+5$
 $y(3)=6-\frac{1}{3}+5=\frac{10}{3}$ or $\frac{32}{3}$

Method 2 $\int_{3}^{3}y'dx=y(3)-y(1)$
 $y(3)=y(1)+\int_{3}^{3}y'dx$
 $y(3)=6+\int_{3}^{3}(2+\frac{1}{x^{2}})dx$
 $=6+(6-\frac{1}{3})-(2-1)=\frac{10}{3}$ or $\frac{32}{3}$

2 $f'(x)=\cos(2x)$ and $f(0)=3$. Find $f(\frac{1}{4})$.

Method 1 $f(x)=\int_{3}^{2}\cos(2x)dx=\frac{1}{2}\int_{3}^{2}\cos udu=\frac{1}{2}\sin u+C$
 $u=2x$
 $u=2dx$
 $u=2d$

$$W = \frac{1}{75} \left(600 + 10t^2 - \frac{1}{3}\right) + C$$

$$W(0) = 150 = C$$

$$W = \frac{1}{75} \left(600 + 10t^2 - \frac{1}{3}\right) + 150$$

$$W(24) = 357.36 \text{ gallons}$$

$$M(24) = 357.36 \text{ gallons}$$

$$W(24) = W(0) + \int_{0}^{24} W'(t) dt$$

$$W(24) = W(0) + \int_{0}^{24} W'(t) dt$$

Method 1 W= 75 S (600 + 20t - t2) dt

w(0) = 150

Find W(24)

3 dw = 75 (600+20t-t2)

$$W(24) = 150 + \int_{0}^{24} \frac{1}{75} \left(600 + 206 - \frac{1}{2}\right) dt$$

$$= 150 + \frac{1}{75} \left[600 + 10t^{2} - \frac{1}{3}\right]_{0}^{24}$$

$$= 357.36 \text{ gallons}$$
or $150 + \frac{1}{75} \left(600(24) + 10(24)^{2} - \frac{24}{3}\right) - \frac{1}{75} \left(0\right)$

$$f(i) = 2(i) \int_{0}^{1} cos(x^{3}) dx = 2.932$$

$$(5) f'(x) = e^{-x^{2}}, f(5) = 1$$

$$f(2) = f(5) \int_{0}^{5} \int_{0}^{5} f'(x) dx$$

$$f(2) = f(5) \int_{0}^{5} e^{-x^{2}} dx = 0.996$$

$$f(2) = 1(i) \int_{0}^{5} e^{-x^{2}} dx = 0.996$$

$$f(3) = f(3) \int_{0}^{5} e^{-x^{2}} dx = 0.996$$

$$f(3) = f(3) \int_{0}^{5} e^{-x^{2}} dx = 0.996$$

$$f(4) \int_{0}^{5} e^{-x^{2}} dx = 0.996$$

$$f(5) \int_{0}^{5} e^{-x^{2}} dx = 0.996$$

$$f(7) = f(6) \int_{0}^{5} e^{-x^{2}} dx = 0.996$$

$$f(7) = f(6) \int_{0}^{5} f'(6) dx = 0.837$$

$$f(7) = f(7) \int_{0}^{5} f'(7) dx = 0.837$$

$$f(7) = f(7) \int$$

 $S(3) = 5 + \int_0^3 \frac{t}{1+t^2} dt = [6.151]$

(4) f'(x) = cos(x3), f(0) = 2.

t(i)= t(0)⊕ \", t(x) qx

CALCULUS

WORKSHEET ON THE FUNDAMENTAL THEOREM OF CALCULUS

Work the following on notebook paper.

Work problems 1 - 3 by both methods.

1.
$$y' = 2 + \frac{1}{x^2}$$
 and $y(1) = 6$. Find $y(3)$.

2.
$$f'(x) = \cos(2x)$$
 and $f(0) = 3$. Find $f\left(\frac{\pi}{4}\right)$.

3. Water flows into a tank at a rate of
$$\frac{dW}{dt} = \frac{1}{75} \left(600 + 20t - t^2\right)$$
, where $\frac{dW}{dt}$ is measured in gallons per hour and t is measured in hours. If there are 150 gallons of water in the tank at time $t = 0$, how many gallons of water are in the tank when $t = 24$?

Work problems 4 – 8 using the Fundamental Theorem of Calculus and your calculator.

4.
$$f'(x) = \cos(x^3)$$
 and $f(0) = 2$. Find $f(1)$.

5.
$$f'(x) = e^{-x^2}$$
 and $f(5) = 1$. Find $f(2)$.

6. A particle moving along the x-axis has position
$$x(t)$$
 at time t with the velocity of the particle $v(t) = 5\sin(t^2)$. At time $t = 6$, the particle's position is $(4, 0)$. Find the position of the particle when $t = 7$.

7. Let
$$F(t)$$
 represent a bacteria population which is 4 million at time $t = 0$. After t hours, the population is growing at an instantaneous rate of 2^t million bacteria per hour. Find the total increase in the bacteria population during the first three hours, and find the population at $t = 3$ hours.

8. A particle moves along a line so that at any time
$$t \ge 0$$
 its velocity is given by $v(t) = \frac{t}{1+t^2}$. At time $t = 0$, the position of the particle is $s(0) = 5$. Determine the position of the particle at $t = 3$.

Use the Fundamental Theorem of Calculus and the given graph.

9. The graph of
$$f'$$
 is shown on the right.

$$\int_{1}^{4} f'(x) dx = 6.2 \text{ and } f(1) = 3. \text{ Find } f(4).$$

10. The graph of
$$f'$$
 is the semicircle shown on the right.
Find $f(-4)$ given that $f(4)$.

11. The graph of
$$f'$$
, consisting of two line segments and a semicircle, is shown on the right. Given that $f(-2) = 5$, find:

that
$$f(-2) = 5$$
, find:
(a) $f(1)$ (b) $f(4)$

(c)
$$f(8)$$

12. Let f be the function whose graph goes through the point (3, 6) and whose derivative is given by $f'(x) = \frac{1+e^x}{x^2}$ Find f(3.1) $\int_3^{3.1} f'(x) dx = f(3.1) - f(3)$

$$f(3.1) = 6 + \int_{3}^{3.1} \frac{1 + e^{x}}{x^{2}} dx = 6.238$$

$$6 + 238$$

$$5.762 \text{ if minus}$$

$$13. \text{ (Multiple Choice) If } f \text{ is the antiderivative of } \frac{x^{2}}{1+x^{5}} \text{ such that } f(1) = 5 \text{ , then } f(4) = (A) 4.988 \quad (B) 5 \quad (C) 5.016 \quad (D) 5.376 \quad (E) 5.629$$

$$\int_{1}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(4) - f(1)$$

$$\int_{1 \pm x^{5}}^{4} f'(x) dx = f(1)$$

1. $\frac{32}{3}$ $2. \frac{7}{2}$ 8.6.151

7. 10.099 million, 14.099 million

4. 2.932
$$10. 7-8\pi$$
5. 0.996
$$11. (a) 9.5 (b) 6.5 (c) 6.5 + 2\pi$$

9. 9.2

12.6.238

Nancy Stephenson, Clements High School, Sugar Land, Texas

3. 357.36 gallons

6. 3.837

13. D