CALCULUS WORKSHEET ON ANTIDERIVATIVES

$$1. \int (5-x)dx$$

 $4. \int (1+3t)t^2dt$

5.
$$\int (\theta^2 + \sec^2 \theta) d\theta$$

 $2. \int (x^3 - 4x + 2) dx$

$$^{2} + \sec^{2}\theta)d\theta$$

6.
$$\int \sec y(\tan y - \sec y)dy$$

3. $\int \left(\sqrt{x} + \frac{1}{2\sqrt{x}}\right) dx$

Solve the differential equation.
8.
$$h'(t) = 8t^3 + 5$$
, $h(1) = -4$

7. Find the equation for y given
$$\frac{dy}{dx} = 2x - 1$$
 and $y(1) = 1$.

9.
$$f''(x) = 2$$
, $f'(2) = 5$, $f(2) = 10$

$$\theta$$
, $f'(0) = 1$, $f(0) = 1$

$$f'(0) = 1, f(0)$$

11.
$$f''(\theta) = \sin \theta$$
, $f'(0) = 1$, $f(0) = 6$

10.
$$f'(s) = 6s - 8s^3$$
, $f(2) = 3$

12. A particle moves along the x-axis at a velocity of $v(t) = \frac{1}{\sqrt{t}}$, $t > 0$. At time $t = 1$, its position is $x = 4$. Find
the acceleration and position functions for the particle.
13. A particle, initially at rest, moves along the x-axis such that its acceleration at time $t > 0$ is given by $a(t) = \cos t$. At the time $t = 0$, its position is $x = 3$.
Decide if the statements below are TRUE or FALSE. If False, give a reason or a counterexample.
14. The anti-derivative of an <i>n</i> th-degree polynomial function is an $(n + 1)$ th-degree polynomial.
15. If $p(x)$ is a polynomial function, then p has exactly one antiderivative whose graph contains
the origin.
16. If $f'(x) = g(x)$, then $\int g(x)dx = f(x) + C$
17. The antiderivative of $f(x)$ is unique.