CALCULUS BC WORKSHEET ON AREA AND VOLUME

Work the following on notebook paper.

Problems 1 and 2 are **noncalculator**.

- 1. Let R be the region bounded by the x-axis, the graph of $y = \sqrt{x}$, and the line x = 4.
- (a) Find the area of the region R.
 - (b) Find the value of h such that the vertical line x = h divides the region R into two regions of equal area.
- (c) Find the volume of the solid generated when R is revolved about the x-axis.
- (d) The vertical line x = k divides the region R into two regions such that when these two regions are revolved about the x-axis, they generate solids with equal volumes. Find the value of k.
- 2. Let R be the region enclosed by the graphs of $y = e^x$, $y = (x-1)^2$, and the line x = 1.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when R is revolved about the x-axis.
 - (c) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the y-axis.

Use your calculator on problems 3 - 6. 3. Let R be the shaded region in the first quadrant enclosed

by the graphs of $y = e^{-x^2}$, $y = 1 - \cos x$, and the y-axis, as shown in the figure.

- (a) Find the area of the region R.
- (b) Find the volume of the solid generated when the region R is revolved about the x-axis.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

- 4. Let R and S be the regions in the first quadrant shown in the figure. The region R is bounded by the x-axis and the graphs of $y = 2 x^3$ and $y = \tan x$. The region S is bounded by the y-axis and the graphs of $y = 2 x^3$
 - and $y = \tan x$. (a) Find the area of R.
 - (b) Find the area of S.
 - (c) Find the volume of the solid generated when S is revolved about the x-axis.

- 5. Let R be the shaded region in the first quadrant enclosed by the graphs of $y = 4e^{-x}$, $y = \tan\left(\frac{x}{2}\right)$,
 - and the y-axis, as shown in the figure.
 - (a) Find the area of the region.(b) Find the volume of the solid generated when the region R is revolved about the x-axis.
 - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a semicircle.

Find the volume of this solid.

- 6. Let R be the region bounded by the graphs of $y = \sin(x^2)$ and $y = 1 x^2$.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when R is revolved around the line y = -1.
 (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an isosceles right triangle with one leg in the region R. Find the volume of this solid.