CALCULUS BC WORKSHEET ON PARAMETRICS AND CALCULUS

On problems 1 – 5, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

1.
$$x = t^2$$
, $y = t^2 + 6t + 5$

2.
$$x = t^2 + 1$$
, $y = 2t^3 - t^2$
3. $x = \sqrt{t}$, $y = 3t^2 + 2t$

3.
$$x = \sqrt{t}$$
, $y = 3t^2 + 2t$

4.
$$x = \ln t$$
, $y = t^2 + t$
5. $x = 3\sin t + 2$, $y = 4\cos t - 1$

6. A curve C is defined by the parametric equations
$$x = t^2 + t - 1$$
, $y = t^3 - t^2$.

(a) Find $\frac{dy}{dt}$ in terms of t.

$$\frac{dy}{dx}$$
 in terms of

(b) Find an equation of the tangent line to C at the point where t=2.

and
$$\frac{d}{dx}$$
 in terms of an equation of the C is defined by

7. A curve C is defined by the parametric equations $x = 2\cos t$, $y = 3\sin t$. (a) Find $\frac{dy}{dx}$ in terms of t.

(a) Find
$$\frac{dy}{dx}$$
 in terms of t .
(b) Find an equation of the tangent line to C at the point where $t = \frac{\pi}{4}$.

(a)
$$\frac{dy}{dt}$$
 in terms of t .

11. $x = t^2$, $y = t^3$, $0 \le t \le 2$

(a)
$$\frac{dy}{dx}$$
 in terms of t.

(b) all points of horizontal and vertical tangency
8.
$$x = t + 5$$
, $y = t^2 - 4t$

8.
$$x = t + 5$$
, $y = t^2 - 4t$
9. $x = t^2 - t + 1$, $y = t^3 - 3t$

9.
$$x = t^2 - t + 1$$
, $y = t^3 - 3t$
0. $x = 3 + 2\cos t$, $y = -1 + 4\sin t$

9.
$$x = t^2 - t + 1$$
, $y = t^3 - 3t$
10. $x = 3 + 2\cos t$, $y = -1 + 4\sin t$

0.
$$x = 3 + 2\cos t$$
, $y = -1 + 4\sin t$

$$3 + 2\cos t, \ y = -1 + 4\sin t$$

$$x = t + 5, y = t^{2} - 4t$$

$$x = t^{2} - t + 1, y = t^{3} - 3t$$

On problems 11 - 12, a curve C is defined by the parametric equations given. For each problem,

write an integral expression that represents the length of the arc of the curve over the given interval 11.
$$x = t^2$$
, $y = t^3$, $0 \le t \le 2$
12. $x = e^{2t} + 1$, $y = 3t - 1$, $-2 \le t \le 2$